Particle Swarm optimization

Contents

\checkmark Introduction to Optimization
\checkmark Particle Swarm Optimization
\checkmark Illustration of Algorithm
\checkmark Mathematical Interpretation
\checkmark Example
\checkmark Dataset Illustration

Introduction to Optimization

- The optimization can be defined as a mechanism through which the maximum or minimum value of a given function or process can be found.
- The function that we try to minimize or maximize is called as objective function.
- Variable and parameters.
- Statement of optimization problem

Minimize $\mathbf{f}(\mathbf{x})$
subject to $g(x)<=0$
$h(x)=0$.

- Two main phases Exploration and Exploitation

Introduction to Optimization

Application to optimization: Particle Swarm Optimization
Proposed by James Kennedy \& Russell Eberhart (1995)
Combines self-experiences with social experiences

Particle Swarm Optimization(PSO)

- Inspired from the nature social behavior and dynamic movements with communications of insects, birds and fish.

Particle Swarm Optimization(PSO)

\checkmark Uses a number of agents (particles) that constitute a swarm moving around in the search space looking for the best solution

Each parifle in search space adjusts its "flying" according to its own flying experience as well as the flying experience of other particles.
\checkmark Each particle has three parameters position, velocity, and previous best position, particle with best fitness value is called as global best position.

Contd..

Collection of flying particles (swarm) - Changing solutions
Search area - Possible solutions
\checkmark Movement towards a promising area to get the global optimum.
\checkmark Each particle adjusts its travelling speed dynamically corresponding to the flying experiences of itself and its colleagues.

Each particle keeps track:
its best solution, personal best, pbest.
the best value of any particle, global best, gbest.
Each particle modifies its position according to:

- its current position

- its current velocity
- the distance between its current position and pbest.
- the distance between its current position and gbest.

Algorithm - Parameters

f : Objective function

Xi: Position of the particle or agent.
Vi: Velocity of the particle or agent.
A: Population of agents.
W: Inertia weight.
C1: cognitive constant.
R1, R2: random numbers.
C2: social constant.

Algorithm - Steps

1. Create a 'population' of agents (particles) uniformly distributed over \mathbf{X}
2. Evaluate each particle's position according to the objective function(say

$$
Y=F(x)=-x \wedge 2+5 x+20
$$

1. If a particle's current position is better than its previous best position, update it.
2. Determine the best particle (according to the particle's previous best positions).

Contd..

5. Update particles' velocities:

6. Move particles to their new positions:

$$
\mathbf{p}_{i}^{t+1}=\mathbf{p}_{i}^{t}+\mathbf{v}_{i}^{t+1}
$$

7. Go to step 2 until stopping criteria are satisfied.

Contd...

Particle's velocity

- Makes the particle move in the same direction and with the same velocity
- Improves the individual
- Makes the particle return to a previous position, better than the current
- Conservative
- Makes the particle follow the best neighbors direction

Acceleration coefficients

- When , $\mathbf{c 1}=\mathbf{c} 2=\mathbf{0}$ then all particles continue flying at their current speed until they hit the search space's boundary. Therefore, the velocity update equation is calculated as:

- When $\mathbf{c} 1>\mathbf{0}$ and $\mathbf{c} \mathbf{2}=\mathbf{0}$, all particles are independent. The velocity update equation will be:

- When $\mathrm{c} 1>0$ and $\mathrm{c} 2=0$, all particles are attracted to a single point in the entire swarm and the update velocity will become

- When $\mathrm{c} 1=\mathrm{c} 2$, all particles are attracted towards the average of pbest and gbest.

Contd...

\checkmark Intensification: explores the previous solutions, finds the best solution of a given region
\checkmark Diversification: searches new solutions, finds the regions with potentially the best solutions
\checkmark In PSO:

$$
\mathbf{v}_{i}^{t+1}=\underbrace{\mathbf{v}_{i}^{t}}_{\text {Diversification }}+\underbrace{\mathbf{c}_{1} \mathbf{U}_{1}^{t}\left(\mathbf{p} \mathbf{b}_{i}^{t}-\mathbf{p}_{i}^{t}\right)+\mathbf{c}_{2} \mathbf{U}_{2}^{t}\left(\mathbf{g} \mathbf{b}^{t}-\mathbf{p}_{i}^{t}\right)}_{\text {Intensification }}
$$

Example:

Contd..

Contd..

Contd..

Flow chart of Algorithm

Mathematical Example and Interpretation

Fitness Function

\checkmark De Jong Function

$$
\operatorname{minF}(x, y)=x \wedge 2+y \wedge 2
$$

Where x and y are the dimensions of the problem. The surface and contour plot of the De Jong function is given as:

(a)

(b)

Mathematical Example and Interpretation

Contd..

Rastrigin Function

$$
\sum_{t=1}^{D}\left(x_{i}-10 \cdot \cos \left(2 \cdot \Pi \cdot x_{i}\right)\right.
$$

The surface and contour plot of the De Jong function is given as:

(a)

(b)

Mathematical Example and Interpretation

Contd...

Banana Function

$$
f(\mathbf{x})=\sum_{i=1}^{d-1}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(x_{i}-1\right)^{2}\right]
$$

The surface and contour plot of the Rosenbrock function or $2^{\text {nd }}$ De Jong function Or yalley or banana functions given as:

Mathematical Example and Interpretation

Example 1

Find the minimum of the function

$$
f(x)=-x^{2}+5 x+20
$$

Using PSO algorithm. Use 9 particles with initial positions

$$
\begin{aligned}
& x_{1}=-9.6, x_{2}=-6, x_{3}=-2.6, x_{4}=-1.1 \\
& x_{5}=0.6, x_{6}=2.3, x_{7}=2.8, x_{8}=8.3, x_{9}=10 \\
& \text { Solution Choose the number of particles } \\
& x_{1}=-9.6, x_{2}=-6, x_{3}=-2.6, x_{4}=-1.1, \\
& x_{5}=0.6, x_{6}=2.3, x_{7}=2.8, x_{8}=8.3, x_{9}=10
\end{aligned}
$$

Evaluate the objective function

$$
\begin{aligned}
& f_{1}^{0}=-120.16, f_{2}^{0}=-46, f_{3}^{0}=0.24 \\
& f_{4}^{0}=13.29, f_{5}^{0}=22.64, f_{6}^{0}=26.21 \\
& f_{7}^{0}=26.16, f_{8}^{0}=-7.39, f_{9}^{0}=-30
\end{aligned}
$$

Mathematical Example and Interpretation

Contd..

Let $\mathrm{c} 1=\mathrm{c} 2=1$ and set initial velocities of the particles to zero.

$$
v_{1}^{0}=0, v_{1}^{0}=v_{2}^{0}, v_{3}^{0}, v_{4}^{0}=v_{5}^{0}=v_{6}^{0}=v_{7}^{0}=v_{8}^{0}=v_{9}^{0}=0
$$

Step2. Set the iteration no as $t=0+1$ and go to step 3

Step 3. Find the personal best for each particle by

$$
P_{\text {best }, i}^{t+1}= \begin{cases}P_{\text {best }, i}^{t} & \text { if } f_{i}^{t+1}>P_{\text {best }, i}^{t} \\ x_{i}^{t+1} & \text { if } f_{i}^{t+1} \leq P_{\text {best }, i}^{t}\end{cases}
$$

$$
P_{b e s t, 1}^{1}=-9.6, P_{b e s t, 2}^{1}=-6, P_{b e s t, 3}^{1}=-2.6
$$

So

$$
\begin{aligned}
& P^{1}{ }_{\text {best }, 4}=-1.1, P^{1}{ }_{\text {best }, 5}=0.6, P_{\text {best }, 6}^{1}=2.3 \\
& P^{1}{ }_{\text {best }, 7}=2.8, P^{1}{ }_{\text {best }, 8}=8.3, P^{1}{ }_{\text {best }, 9}=10
\end{aligned}
$$

Mathematical Example and Interpretation

Contd..

Step 4: Gbest $=\max ($ Pbest $)$ so gbest $=(2.3)$.
Step 5: updating the velocities of the particle by considering the value of random numbers $\mathrm{r} 1=0.213, \mathrm{r} 2=0.876, \mathrm{c} 1=\mathrm{c} 2=1$, $\mathrm{w}=1$.

$$
v_{i}^{t+1}=v_{i}^{t}+c_{1} r_{1}^{t}\left[P_{\text {best }, i}^{t}-x_{i}^{t}\right]+c_{2} r_{2}^{t}\left[G_{\text {best }}^{t}-x_{i}^{t}\right] ; i=1, \ldots, 9 .
$$

$$
v_{1}^{1}=0+0.213(-9.6+9.6)+0.876(2.3+9.6)=10.4244
$$

$$
v_{2}{ }^{1}=7.2708, v_{3}{ }^{1}=4.2924, v_{5}{ }^{1}=1.4892, v_{6}{ }^{1}=0, v_{7}{ }^{1}=-0.4380, v_{8}{ }^{1}=5.256, v_{9}{ }^{1}=-6.7452
$$

Step 6: update the values of positions as well

$$
x_{i}^{t+1}=x_{i}^{t}+v_{i}^{t+1}
$$

Mathematical Example and Interpretation

Contd..

So

$$
\begin{aligned}
& x_{1}^{1}=0.8244, x_{2}^{1}=1.2708, x_{3}^{1}=1.6924 \\
& x_{4}^{1}=1.8784, x_{5}^{1}=2.0892, x_{6}^{1}=2.3 \\
& x_{7}^{1}=2.362, x_{8}^{1}=3.044, x_{9}^{1}=3.2548
\end{aligned}
$$

Step7: Find the objective function values of

$$
\begin{aligned}
& f_{1}{ }^{1}=23.4424, f_{2}{ }^{1}=24.739, f_{3}{ }^{1}=25.5978 \\
& f_{4}{ }^{1}=25.8636, f_{5}{ }^{1}=26.0812, f_{6}{ }^{1}=26.21 \\
& f_{7}{ }^{1}=26.231, f_{8}{ }^{1}=25.9541, f_{9}{ }^{1}=25.6803
\end{aligned}
$$

Step 8: Stopping criteria

Contd.

- Step2. Set the iteration no as $t=1+1=2$ and go to step 3

Step 3. Find the personal best for each particle by
$P_{\text {best }, 1}^{2}=0.8244, P_{\text {best }, 2}^{2}=1.2708, P_{\text {best }, 3}=1.6924$ $P_{\text {best }, 4}^{2}=1.87884, P_{\text {best }, 5}^{2}=2.0892, P_{\text {best }, 6}=2.3$ $P_{\text {best }, 7}=2.362, P_{\text {best }, 8}^{2}=3.044, P_{\text {best }, 9}^{2}=3.2548$

Step 4: find the global best

$$
G_{b e s t}=2.362
$$

Step 5: by considering the random numbers in range $(0,1)$ as

$$
r_{1}^{2}=0.113, r_{2}^{2}=0.706
$$

Contd..

- Find the velocities of the particles:

$$
v_{i}^{t+1}=v_{i}^{t}+c_{1} r_{1}^{t}\left[P_{\text {best }, i}^{t}-x_{i}^{t}\right]+c_{2} r_{2}^{t}\left[G_{\text {best }}^{t}-x_{i}^{t}\right] ; i=1, \ldots, 9
$$

$$
v_{1}^{2}=11.5099, v_{2}^{2}=8.0412, v_{3}^{2}=4.7651, v_{4}^{2}=3.3198
$$

$$
v_{5}^{2}=1.6818, v_{6}^{2}=0.0438, v_{7}^{2}=-0.4380, v_{8}^{2}=-5.7375, v_{9}^{2}=-7.3755
$$

Step 6: update the values of positions as well

$$
\begin{aligned}
& x_{1}^{2}=12.3343, x_{2}^{2}=9.312, x_{3}^{2}=6.4575 \\
& x_{4}^{2}=5.1982, x_{5}^{2}=3.7710, x_{6}^{1}=2.3438 \\
& x_{7}^{2}=1.9240, x_{8}^{2}=-2.6935, x_{9}^{2}=-4.12078
\end{aligned}
$$

Contd...

- Step7: Find the objective function values of

$$
\begin{aligned}
& f_{1}^{2}=-70.4644, f_{2}^{2}=-20.1532, f_{3}^{2}=10.5882 \\
& f_{4}^{2}=18.9696, f_{5}^{2}=24.6346, f_{6}^{2}=26.2256 \\
& f_{7}^{2}=25.9182, f_{8}^{2}=-0.7224, f_{9}^{2}=-17.5839
\end{aligned}
$$

Step 8: Stopping criteria
if the terminal rule is satisfied, go to step 2. Otherwise stop the iteration and output the results

Contd.

- Step2. Set the iteration no as $\mathrm{t}=1+2=3$ and go to step 3

Step 3. Find the personal best for each particle by
$P^{3}{ }_{\text {best }, 1}=0.8244, P^{3}{ }_{\text {best }, 2}=1.2708, P^{3}{ }_{\text {best }, 3}=1.6924$
$P^{3}{ }_{\text {best }, 4} \neq 1.87884, P_{b e s t, 5}^{3}=2.0892, P_{b e s t, 6}{ }_{\text {b }}=2.3$
$P^{3}{ }_{\text {best }}{ }^{\text {b }}=2.362, P_{\text {best }, 8}=3.044, P_{\text {best }, 9}=3.2548$
Step 4. find the global best

$$
G_{\text {best }}=2.362
$$

Step 5: by considering the random numbers in range $(0,1)$ as

$$
r_{1}^{3}=0.178, r_{2}^{3}=0.507
$$

$$
\begin{aligned}
& v_{1}^{3}=4.4052, v_{2}^{3}=3.0862, v_{3}^{3}=1.8405, v_{4}^{3}=1.2909 \\
& v_{5}^{3}=0.6681, v_{6}^{3}=0.053, v_{7}^{3}=-0.1380, v_{8}^{3}=-2.1531, v_{9}^{3}=-2.7759
\end{aligned}
$$

Step 6: update the values of positions as well

$$
\begin{aligned}
& x_{1}^{3}=16.7395, x_{2}^{3}=12.3982, x_{3}^{3}=8.298 \\
& x_{4}^{3}=6.4862, x_{5}^{3}=4.4391, x_{6}^{3}=2.3968 \\
& x_{7}^{3}=1.786, x_{8}^{3}=-4.8466, x_{9}^{3}=-6.8967
\end{aligned}
$$

Step7: Find the objective function values of

Contd.

$$
\begin{aligned}
& f_{1}^{3}=-176.5145, f_{2}^{3}=-71.7244, f_{3}^{3}=-7.3673 \\
& f_{4}^{3}=10.3367, f_{5}^{3}=22.49, f_{6}^{3}=26 . .2393 \\
& f_{7}^{3}=25.7402, f_{8}^{3}=-27.7222, f_{9}^{3}=-62.0471
\end{aligned}
$$

Step 8: Stopping criteria
if the terminal rule is satisfied, go to step 2.
Otherwise stop the iteration and output the results

Mathematical Example and Interpretation

Example

Iteration First:

Fitness Function :De Jong function $\min F(x, y)=x^{2}+y^{2}$
Where x and y are the dimensions of the problem, the velocities of all the particles are initialized to zero and inertia $(\mathbf{W})=\mathbf{0 . 3}$, and the value of the cognitive and social constants
are
$\mathbf{C 1}=\mathbf{2}$ and $\mathbf{C 2}=\mathbf{2}$. The initial best solutions of all the particles are set to $\mathbf{1 0 0 0}$
$P 1$ fitness value $=1^{2}+1^{2}=2$
TABLE 1: Initial positions, velocity, and best positions of all particles.

| Particle No. | Initial Positions | | Velocity | | Best Solution | Best Position | | Fitness |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | x | y | x | y | | x | y | Value |
| P_{1} | 1 | 1 | 0 | 0 | 1000 | - | - | 2 |
| P_{2} | -1 | 1 | 0 | 0 | 1000 | - | - | 2 |
| P_{3} | 0.5 | -0.5 | 0 | 0 | 1000 | - | - | 0.5 |
| P_{4} | 1 | -1 | 0 | 0 | 1000 | - | - | 2 |
| P_{5} | 0.25 | 0.25 | 0 | 0 | 1000 | - | - | 0.125 |

Mathematical Example and Interpretation

Example

Iteration 2nd:

TABLE 2: The positions, velocity and best positions of all particles after the first iteration.

Particle No.	Initial Positions		Velocity		Best Solution	Best Position		Fitness
	x	y	x	y		x		
	Value							

Mathematical Example and Interpretation

Example

Iteration 3rd:

TABLE 3: The positions, velocity and best positions of all particles after the second iteration.

Particle No.	Initial Positions		Velocity		Best Solution	Best Position		Fitness Value
	x	y	x	y		X	y	
P_{1}	0.25	0.25	-0.3750	-0.3750	2	1	1	0.125
P_{2}	0.25	0.25	0.6250	-0.3750	2	-1	1	0.125
P_{3}	0.25	0.25	-0.1250	0.3750	0.5	0.5	-0.5	0.125
P_{4}	0.25	0.25	-0.3750	0.6250	2	1	-1	0.125
P_{5}	0.25	0.25	0	0	0.125	0.25	0.25	0.125

Mathematical Example and Interpretation

Example

Iteration 3rd:

TABLE 3: The positions, velocity and best positions of all particles after the second iteration.

Particle No.	Initial Positions		Velocity		Best Solution	Best Position		Fitness Value
	x	y	x	y		X	y	
P_{1}	0.25	0.25	-0.3750	-0.3750	2	1	1	0.125
P_{2}	0.25	0.25	0.6250	-0.3750	2	-1	1	0.125
P_{3}	0.25	0.25	-0.1250	0.3750	0.5	0.5	-0.5	0.125
P_{4}	0.25	0.25	-0.3750	0.6250	2	1	-1	0.125
P_{5}	0.25	0.25	0	0	0.125	0.25	0.25	0.125

Psuedocode

1. $P=$ particle initialization();
2. For $I=1$ to \max

3 for each particle p in P do

$$
f p=f(p)
$$

4. If $f p$ is better than $f(p b e s t)$
pbest =p;
5. end
6. end
7. gbest = best \mathbf{p} in P .
8. for each particle p in P do

9.

$$
\mathbf{p}_{i}^{t+1}=\mathbf{p}_{i}^{t}+\mathbf{v}_{i}^{t+1}
$$

11. end
12. end

DataSet

Advantages and Disadvantages of PSO

Advantages
\checkmark Insensitive to scaling of design variables.
\checkmark Simple implementation.
\checkmark Easily parallelized for concurrent processing.
\checkmark Derivative free.
\checkmark Very few algorithm parameters.
\checkmark Very efficient global search algorithm.

Disadvantages
\checkmark Slow convergence in refined search stage (weak local search ability).

